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ABSTRACT: Long-Term Memory (LSTM) is a 

specific neural network (RNN) organization 

designed to model temporary sequences and their 

long-distance dependencies more accurately than 

conventional RNNs. This paper, has examined the 

structures of the LSTM RNN and made some 

changes in its performance better. LSTM RNNs 

work better than DNNs. Here, some changes have 

been made to the gate count and remove some 

unnecessary elements for the standard LSTM 

design. This structure effectively uses model 

parameters than other imaginable, rapidly 

changing, and exudes an in-depth neural network 

feed with the order of the largest parameters. 

LSTM final loss is less than the final LSTM loss. 

Keywords- Short-Term Memory, LSTM, 

Recurrent neural network, RNN. 

 

I. INTRODUCTION: 
Deep Neural Network (DNN) is an 

extremely detailed model that can read a very 

sophisticated vector-to-vector map. Recurrent 

Neural Network (RNN) is a DNN set for data 

sequencing, and as a result 

The RNN is also extremely specific. 

RNNs maintain a vector activation step for each 

step, which makes the RNN extremely deep. Their 

depth, too, makes them difficult to train due to 

explosions and disappearing gradient problems [3] 

[13] [14]. 

There have been many attempts to address 

the difficulty of RNN training. The missing 

gradients were successfully answered by 

Hochreiter & Schmidhuber (1997), who developed 

the formulation of Long Short-Term Memory 

(LSTM), which is resistant to gradient extinction. 

LSTM turned to make it easier to use, it has 

become the standard way to deal with the problem 

of perishable gradient. Other efforts to overcome 

the problem of extinct gradient include the use of 

secondorder power algorithms [18] [19] and 

familiarity with RNN instruments that ensure that 

the gradient does not end [23], and stop studying 

repeating instruments completely [15] [16] ] and 

the careful detection of RNN parameters [25] [26] 

In contrast to the disappearing gradient problem, 

the explosive gradient problem was simply easier 

to deal with by simply forcing more severe delays 

than the normal gradient [20] [23]. 

The criticism of LSTM's design is that it is 

ad-hoc and that it has a large number of objects 

whose purpose is not immediately apparent. 

Because of this, it is also not clear whether LSTM 

is well-built, and it is possible that there are better 

facilities. 

Motivated by this critique, we tried to find out if 

the LSTM structure was right with a detailed search 

of the properties. We have found some properties 

such as the Gated Recurrent Unit (GRU) [6] That 

surpassed LSTM and GRU's many functions, or a 

variant of LSTM yielded better results when used 

to quit. In addition, by adding 1 bias to the LSTM 

forgettable gateway. We can close the gap between 

LSTM and better facilities. 

 

Long-term Memory: 

In this section we will briefly describe the 

construction of LSTM. Number 1 traditional 

formation of LSTM.The Standard RNN suffers 

from explosion and decay of gradients [3] [13]. 

Both of these problems are caused by the RNN 

multiplication environment, its gradient equally 

equal to the recurring weight matrix raised to high 

power. These duplicate matrix forces cause 

gradient to increase or decrease significantly over 

the number of steps. While learning can suffer if 

the gradient is reduced by a large factor too often, 

gradient cutting is most effective whenever the 

gradient has a small frequency most of the time. 
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The full description of LSTM includes St 

computing circuitry and data extraction circuits 

from St Unfortunately; different doctors use a 

different version of LSTM. For this function, we 

use the LSTM format described directly below. It is 

similar to the construction of [10] but without 

mineral connections: 

 

 
Figure 1 of LSTM buildings 

 

In the above structure of LSTM the symbols are 

defined as, 

S (t-1): The state of the previous cell 

h (t-1): The hidden state of the previous cell 

f (t): Forget the gate 

(t): Gateway to information 

Si: Sigmoid function 

X (t): Current input 

X: Vector repetition, in this paper must be written 

*. 

O (t): Result 

S (t): The current state of the cell 

h (t): The current hidden state of a cell 

 

In this LSTM structure the state of the cell 

storage state. Based on the current installation 

LSTM decides how much of the previous data 

should be deleted. This action was performed with 

the help of Forget the gate. Once the previous 

information has been removed new information is 

added to the cell using the Information gate. The 

figures are, 

 

i (t) = Si (WxiXt + Whi ht-1 + bi) 

f (t) = Si (WxfXt + Whf ht-1 + bf) 

g = tanh (WxgXt + Whght-1 + bg) 

(t) = Si (WxoXt + Who ht-1 + bo) 

I-S (t) = S (t-1) * f (t) + i (t) * g 

h (t) = tanh (S (t)) * O (t) 

 

The 'W' weight vector is started randomly. ‘B’ bias 

value is also started randomly. All weight loads are 

renewed after each repetition. 

The architecture of LSTM learns more and more 

about training and good performance in the long 

run and short-term memory. 

 

II. METHOD: 
In order to work on this art we create 

inclusion data in the program. The created database 

will be in the range defined by the LSTM build 

standard. The improved architecture has made two 

changes to the standard architecture that helps 

LSTM work more efficiently. 

First, there is a general amount of 

preconceived notion of deletion and new additional 

information was determined separately which is 

why it is not possible to use other full details. For 

new buildings the amount of data to be removed is 

calculated according to the number of new details 

that need to be added. So in the new Architecture 

initially the gate details will count new details to 

add and based on the gate release information 

forget the gate will calculate the amount of details 

to forget. 

Secondly, Due to the use of the 'tanh' 

function when calculating h (t) some use full details 

in the loss which is why we decided to delete this 

'tanh' function. After removing the 'tanh' from the h 

(t) equation the construction of buildings is more 

accurate and the error rate is reduced. 

 

 
Figure 2 Modified LSTM format 
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After the conversion of new statistics is highlighted 

as, 

i (t) = Si (WxiXt + Whi ht-1 + bi) 

f (eg) = (1 - i) 

g = tanh (WxgXt + Whght-1 + bg) 

(t) = Si (WxoXt + Who ht-1 + bo) 

I-S (t) = S (t-1) * f (t) + i (t) * g 

h (t) = S (t) * O (t) 

 

Algorithm / construct modification will not only 

work with accuracy but will reduce the value 

time of execution. 

 

III. OUTCOME AND DISCUSSION: 
We used LSTM in python language and 

worked with many variations but this modified 

version of the building gives us high accuracy. We 

also worked on a lot of modified construction by 

changing common functions, changing equations 

and reconnecting different gates with different 

gates but all construction does not perform well 

compared to standard construction. 

Normal LSTM is made for data collection 

of 0 to 99 iterations and the result is displayed as a 

output screen. This short screen only showed the 

last part of the product with the last loss at the end 

of the output. 

 

 
Figure 3 General Outcome of LSTM 

 

In figure 3 after the last repetition the final 

loss is 6.31438e-07. This loss is less than all other 

losses of various properties except for number 2 

LSTM loss losses. 

Now, the modified LSTM when used to 

insert the same data the result is displayed as the 

output screen screen. This short screen only 

showed the last part of the product. 

  

 
 

Figure 4 Transformed LSTM Effect 

 

In figure 4 after the last repetition the final loss is 

1.6971403e-07. LSTM final loss is less than the 

final LSTM loss. 

 

 Standard 

LSTM 

Modified LSTM 

Loss 6.31438e-07 1.6971403e-07 

Table 1 Loss difference 

 

IV. CONCLUSION: 
The standard LSTM configuration works 

best for RNN by handling the gradient extinction 

problem. LSTM architecture is incomplete. To 

make it more accurate we tried on it by changing its 

design so we came up with a new LSTM design 

that works better than standard construction. LSTM 

performance. 
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